
JOURNAL OF SPACECRAFT AND ROCKETS
Vol. 35, No. 2, March–April 1998

Trajectory Design in the Sun–Earth–Moon System
Using Lunar Gravity Assists

Roby S. Wilson¤ and Kathleen C. Howell†

Purdue University, West Lafayette, Indiana 47907-1282

The objectiveof this work is the developmentof ef� cient techniques for the preliminarydesign of trajectories that
encounter themoonandmust satisfy speci� c trajectory requirements, such as apogeeplacement, launchconstraints,
or end-state targeting. These types of trajectories are highly applicable to mission design in the restricted three-
and four-body problems. The general solution approach proceeds in three steps. In the initial analysis, conic arcs
and/or other types of trajectory segments are connected at patch points to construct a � rst approximation. Next,
multiconic methods are used to incorporate any additional force model effects that may have been neglected in the
initial analysis. An optimization procedure is then employed to reduce the effective velocity discontinuities while
satisfyingany constraints. Finally,anumericaldifferential corrections process results ina fullycontinuousmultiple-
lunar-swingby trajectory that satis� es the constraints and includes appropriate lunar and solar gravitational
models.

Nomenclature
A, B, C , D = submatrices of the state transition matrix
a = semimajor axis
Ci = conic endpoint
e = eccentricity
G ¢ M¤ = dimensional gravitationalparameter,

403,503 km3/s2

i = inclination
JD = Julian date
L i = libration point
L¤ = dimensional length, 384,388 km
M = state relationship matrix
Napos = number of apogees
Nmos = number of months
P, A = perigee, apogee
RE = Earth radius, 6378.14 km
Rp = perigee radius
R, V, a = position, velocity, and acceleration vectors
T ¤ = dimensional time, 375,173 s
t = time
OX, OY, OZ = inertial unit vectors
Ox, Oy, Oz = rotating unit vectors
a k = constraint k
D V = velocity discontinuityvector
h = true anomaly
n , g = conic parameterizations
r 0,1,2 = set of switching parameters
U = state transition matrix
v , w = phasing angles
\ = ascending node

Introduction

T HE goal of this study is the development of a design tool to
create multiple-lunar-swingby trajectories in an ef� cient and

accurate manner and one that is applicable for a variety of mission
scenarios.The examplesin thispaperdemonstratetwo suchpossible
trajectory concepts. The � rst example focuses on using multiple
lunar gravity assists to achieve a � xed line of apsides with respect
to the sun–Earth line. The second type uses a single gravity assist to
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insert into an orbit in the vicinity of one of the sun–Earth libration
points.

In this analysis, the problemsolution is separated into a sequence
of increasinglycomplex steps.1,2 Initially, the trajectory is approxi-
mated as a series of geocentric arcs that encounter the moon at the
beginningand/or end of each leg. This analysis is useful in establish-
ing general trajectory characteristics such as orientation relative to
the sun,apogeedistances,andapproximatelunar encountertimes.3,4

Note that, although these arcs are frequentlyassumed to be conics, it
is also possible to employ other types of approximate trajectoryarcs
to obtain this initial solution. For example, solutions of a restricted
three-body (or four-body) problem can be used to obtain an initial
approximation for transfers from Earth to the sun–Earth libration
points.5 In the next step of the process, the initial approximation is
improved by using multiconic techniques to incorporate the effects
of additional gravity � elds, with the goal of preserving the general
characteristics of the initial approximate trajectory. (These multi-
conic techniques are not limited to gravitational perturbations but
can also beused to includeother typesof perturbations,such as solar
radiation pressure.) In addition, a differential corrections process is
employed to ensure position and velocity continuity along the path
while satisfying all constraints imposed upon the trajectory. The
implementationof this intermediatestep is the primary focus of this
work. In the � nal step, the results are numerically integrated using
a sun–Earth–moon (SEM) model in which solar and lunar positions
are determined from ephemeris data.

This work differs from previous work in the area of multiple-
lunar-swingby(MLS) trajectories,such as that of Ishii and Matsuo,6

by includingan intermediatestep between the initial approximation
and the numerically integrated solution. The application has also
been broadened by incorporating initial approximations that may
be non-Keplerian.Thus, by incorporatingmulticonic techniques in
the second step, the initial approximation can be improved while
the desired orbital characteristicsare maintained. Therefore, much
of the design work can be accomplishedusing simpler models, with
the knowledge that a viable numerically integrated solution can be
obtained.

Background
In the multiple-encounterproblem, the primary focus is the iden-

ti� cation of a speci� c solution for the motion of a spacecraft in a
restricted three- or four-body problem (R3BP or R4BP). In partic-
ular, the methodology is applied in the SEM system. Although it is
possible to generalize this approach to other primary systems, the
SEM system has been the focus of some recent mission planning,
and thus it is the system of choice for this study.To nondimensional-
ize the problem, then, de� ne the characteristicquantitiesG ¢ M¤, L¤,
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and T ¤ corresponding to the gravitational parameter of the Earth–
moon system, the averagedistancebetween the Earth and moon,and
a characteristic time selected such that T ¤ D [L¤3/ (G ¢ M¤)]1/ 2.

The analysis is accomplished using three coordinate systems:
Earth inertial (EI), moon inertial (MI), and solar rotating (SR). The
� rst two frames (EI and MI) are the principal working frames used
in the problem analysis and are de� ned as follows. The EI frame
( OXe , OYe , OZe) has its origin at the center of the Earth and is de� ned
consistentwith themean eclipticandequinoxof 2000.The MI frame
( OXm , OYm , OZm ) has its origin at the center of the moon, and each axis
remainsparallelto thecorrespondingaxis in theEI frame.The origin
of the SR frame ( Oxs , Oys , Ozs) is located at the center of the Earth, with
the Oxs axis parallel to the vector from the sun to the Earth. The Ozs

axis is coincidentwith the instantaneousangularmomentum vector
of the Earth about the sun, and thus Oys equals Ozs £ Oxs .

The methodology is heavily based on the use of the state transi-
tion matrix (STM). To simplify notation, denote U f,i D U (t f , ti )
as the STM from time ti to t f . The STM can be computed an-
alytically or numerically and is the foundation of the differential
correctionsproceduresused for targeting purposes.A major advan-
tage associated with using the two-body model and conic arcs is
the availability of analytic expressions for the elements of the state
transition matrix.7,8 The functional form of these partial derivatives
depends on the actual conic reference orbit, either elliptical or hy-
perbolic. These analytic expressions offer a quick method for the
determinationof the STM that is extremelyuseful in the application
of the multiconic techniques and can be used in combination with
numerical STMs generated with solutions to the R3BP.

Initial Approximation: Conics
To developa multiple-lunar-swingbytrajectory,an initial approx-

imation that satis� es the speci� ed design requirements is sought.
As an initial baseline, assume a solution such that all trajectoryarcs
can be approximated as geocentric two-body conics, thus neglect-
ing the lunar and solar gravity effects.By specifyingthat each conic
segment begin and/or end with a lunar encounter, an approximate
MLS trajectory can be created simply by “patching” these geocen-
tric conic segments together at consecutive lunar encounter points.
This analysis yields a useful initial approximation to the solution
and providesa basis of comparisonfor the � nal integratedtrajectory.

The motivation for incorporating multiple lunar swingbys into
any trajectory may vary, but frequently the goal is to achieve cer-
tain orbital characteristics relative to the SR frame. The concept
proposed by Farquhar and Dunham,3 using lunar gravity assists to
advance the line of apsides at the rate required to “� x” the orbit in
the SR frame, is one such example. The theoretical basis for de-
termining lunar encounters at appropriate time intervals lies in the
development of a timing condition relating the motion of the sun,
Earth, moon, and spacecraft. The development of this timing con-
dition and the theoretical basis for the initial conic approximation
are presented in detail in Refs. 4, 9, and 10. A brief summary of the
details is presented here.

Timing Condition
To construct a multiple-lunar-encounter trajectory, a method is

required to design a series of Earth-centered conic segments that
begin and/or end with lunar encounters and are oriented in the de-
sired direction relative to the SR frame. This approach ensures that
the spacecraft and the moon will be in the same vicinity at the ap-
propriate times. From detaileddiscussionsin Refs. 4, 9, and 10, it is
apparent that the determination of conic arcs that begin and end in
lunar encounterscan be reduced to the solutionof a single algebraic
equation called the timing condition (TC). The functional form of
this timing condition, from Howell and Marsh,9 is an implicit alge-
braic function of the form

TC(em , v , r 0,1,2, n , g I ac , ec) D 0 (1)

The variable em represents the eccentricity of the lunar orbit about
the Earth with perigee at Pm (Fig. 1). The angle v , also shown in
Fig. 1, describes the orientation of the orbit line of apsides with
respect to the lunar line of apsides, measured clockwise from the OX

Fig. 1 Conic arc de� nitions.

axis. [Note that the conic reference frame ( OX, OY) is de� ned such that
OX is along the line of apsides in the direction of the moon at time

t D 0, denoted as point R.] The parameters r i , n , and g are used
to uniquely parameterize the Earth-centered orbit, as described in
Ref. 9.

The solution of this algebraic function yields two of the orbit
parameters,ac andec, associatedwith theconicsegment.In addition,
the true anomaly h c and the relative time tc corresponding to the
spacecraft location at the endpoints Ci are available. Note that, in
the conic reference frame, t D 0 is de� ned at a spacecraft crossing
of the line of apsides (at perigee P or apogee AOL or AIL; Fig. 1)
accordingto r 2. Therefore,due to the nearsymmetryof the problem,
the spacecraft, Earth, and moon will be nearly collinear along the
spacecraft line of apsides at t D 0.

Conic Arc Selection
Once the conic arc has been determined from the solution of

the timing condition, it is necessary to orient this segment in the
SR frame with respect to the sun–Earth line ( Oxs axis in the SR
frame). It is assumed in the solution process that the conic orbit
plane for each segment is coincident with the lunar orbit plane.
(This requirement facilitates the conic selection process only and
may be relaxed later.) Thus, it is possible to completely de� ne the
appropriate conic segment, as well as its orientation, in terms of
the lunar orbit. The segment is represented by the orbit parameters
ac, ec, \ moon , imoon , h c, and tc at each endpoint (Ci in Fig. 1).

After the conic orbit plane is quanti� ed, orientationof the space-
craft orbit is accomplished through identi� cation of epochs corre-
sponding to appropriate locations of the sun and moon relative to
the Earth. Such epochs result from an iterative search through solar
and lunar ephemerides. This process is aided by the inherent near
symmetry of consecutive collision orbits.4 The angle w (Fig. 1)
speci� es the orientation of the spacecraft line of apsides with re-
spect to the sun–Earth line. This angle is ideally 0 deg for a trajec-
tory with antisolar pointing apogees and 180 deg for solar pointing
apogees.

There are two types of solutions for the conic arcs generated by
solution of the timing condition, as shown in Fig. 1. The � rst type
of conic arc is termed an inner loop.10 For this type, a piece of the
conic solution is chosen that contains at least one perigee and some
number of apogees during the time from one lunar encounter to the
next. The other type of conic segment is called an outer loop10 and
is characterized by conic segments that pass through at least one
apogee and some number of perigees between lunar encounters.

For construction of a complete multiple-lunar-encounter path, a
series of conic arc segments are patched together at lunar encoun-
ters. The arcs must be properly sequenced using the conic arc se-
lection process to ensure an orbit orientationhistory consistentwith
the requirements. The entire process of creating a multiple-lunar-
encounter trajectory by patching these conic arc segments together
is called patched conic analysis (PCA).

This design process requires a set of input parameters that are
determined from the design speci� cations for the mission. These
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parameters are used to solve for the orbital elements describing
the conic arcs that comprise the initial estimate. The � rst input is
the speci� cation of the injection date for the MLS trajectory in
Julian format (JD1). To facilitate a solution, this date is assumed to
correspondto perigeeon the � rst conic segment. The next inputs are
the approximate lengths of the conic segments in an integer number
of months Nmos and the expected number of apogees Napos.

The fourth required input parameter is an estimate of the angle
w . Because most of the � ight time is spent in the outer loops, it is
desirable for these segments to match this speci� cation as closely
as possible. For inner loops, however, it is often desirable from a
mission design standpoint to specify the perigee passage distance
Rp in addition to w . This speci� cation usually results in some loss
of control over the orientationangle w for the segment, but because
the inner loopsare generallyshorter in durationthan the outer loops,
this loss is not crucial to overall trajectory planning.

Given these inputs (JD1, Nmos , Napos , w , and possibly Rp ) that
re� ect the desirable characteristics for each Earth-centered conic,
the conic arc selection algorithm solves the TC iteratively, as de-
scribed in Ref. 10, for the properly oriented conic arc segments
that best match the mission speci� cations. From the solution of the
TC, the orbit parameters representing the conic arcs and the dates
of the lunar encounters are obtained. All conic segments are then
patched together at lunar encounter points to create the two-body
approximation to the solution of the MLS problem.

Initial Approximation: Restricted Three-Body Problem
Another approach for construction of an initial approximation

involves solutions to a restricted three-body problem. One exam-
ple is a transfer from the Earth to a sun–Earth libration-pointorbit
using one or more lunar gravity assists. In this case, the � nal state
for the MLS trajectory is chosen to coincide with a time and posi-
tion state along a stable manifold associated with a predetermined
libration-pointorbit (LPO).5 This manifold state is then targeted by
the trajectory arc selection algorithm to create a transfer from the
Earth to the vicinity of the LPO. A deterministic injection D V at
the � nal state completes the transfer to the libration-pointorbit.

Targetingof the � nal state on the MLS trajectory is accomplished
using two different methods, depending on the desired solution. In
the � rstmethod,theconicarcs leadingto the � nal lunarencounterare
determined, and a two-body Lambert solution is generated between
the � nal lunar encounter and the desired � nal position state. This
method is used to obtain the initial approximationof the transfer that
includes one or more lunar gravity assists. In the second method,
a portion of the manifold (propagated backward from the LPO to
the Earth) is employed as the approximation of the � nal segment
in the trajectory. This type of initial approximation is especially
relevant for those MLS solutions with one lunar encounter or no
lunar encounters.

Results from Patched Conic Analysis
The � rst example of a multiple-lunar-swingbytrajectory is com-

posed of four conic segments: two inner loops and two outer loops.
For this trajectory, it is speci� ed that the spacecraft apogees switch
froman orientationin theantisolar(COxs) directionto the solar (¡Oxs )
direction, creating a “butter�y” trajectory.An injection date of JD
2450573.0is speci� ed for the � rst segment,correspondingto a conic
orbit perigeeon April 4, 1997.The input parameters associatedwith
the conic segments that result from the patched conic algorithm are
shown in Table 1. The conic arc elementsac and ec from the solution
of the TC, as well as the actual trajectory duration, are also shown
for each of the four segments in the trajectory.

The second example of an MLS trajectory is a transfer to the
vicinity of the sun–Earth L2 libration point using a single lunar
� yby. For this case, an initial date of JD 2451547.3 is speci� ed
for the injection segment, correspondingto a conic orbit perigee on
Nov. 4, 1999. The end state is selected to coincide with a speci� ed
Lissajous orbit and its associatedstable manifold.5 The following is
representativeof a state on the manifold: xs D 1,262,748 km, ys D
¡204,731km, and zs D ¡43,300km relative to the SR frame on JD
2451593.6. To generate a transfer path from the Earth to the target
point, a variety of approaches might be used to produce an initial

Table 1 Input/output parameters for butter� y example

Segment
Parameter 1 2 3 4

Inputs
Nmos 1 2 6 2
Napos 1 1 3 1
Rp , km 6,578 —— 80,000 ——
w , deg 0.0 0.0 90.0 180.0

Outputs
ac/ L¤ 0.56059 1.86946 1.50160 1.87954
ec 0.96947 0.81973 0.86140 0.80178
D t , days 15.4276 63.7251 157.4934 64.2000

Fig. 2 Butter� y example: PCA.

Fig. 3 Earth-to-L2 transfer example: PCA.

approximation. In this case, an initial conic arc associated with the
phasing loops is determined with a nondimensional ac D 0.56946
and an eccentricityec D 0.96995, similar to the � rst example.Then,
given the positionand date of the lunarencounter,the � nal trajectory
segment is initially approximated as a conic that connects the lunar
encounterwith the targetpositionanddate froma numericalsolution
of the R4BP.

The resulting trajectoriesare projectedonto the Oxs–Oys plane in the
SR frame and shown in Figs. 2 and 3. The four-arcbutter�y solution
is shown in Fig. 2 and clearly meets the desired change in solar ori-
entation angle. The LPO transfer example is shown in Fig. 3, where
the dashed line denotes the continuation of the manifold and the
desired Lissajous orbit (as a numerically computed solution of the
R4BP). From the view of the trajectory in the SR frame, it is evi-
dent that this process of patching together two- and four-body arcs
yields a reasonable approximation to solutions of the MLS prob-
lem that meet the design requirements. However, by neglecting the
lunar and solar gravity in the conic arcs, errors are introduced into
the solution.These errors are evidencedas large equivalent velocity
discontinuities at the lunar collision points and (not surprisingly)
a signi� cant velocity discontinuity at the patch point between the
two- and four-bodyarcs. The poor modeling of the lunar encounters
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in PCA generally prevents the straightforward extension of the so-
lution to produce a numerically integrated trajectory with the same
design characteristics.Therefore, it becomes necessary to improve
the initial results so that a viable trajectory can be constructed.

Multiconic Analysis
As an intermediate step between the initial approximation and

numerical integrationin the four-bodyproblem, a three-bodymodel
with solar perturbations is employed to enable any initial result to
serve as the basis for an improved solution of the MLS problem.
The goal in this step is to employ the approximation techniques
in a manner that will ultimately lead to a numerically integrated
trajectory that retains the overall orbit characteristics designed in
the preliminary step.

The differential equations governing motion in the restricted
three-body problem are not, in general, solvable analytically.How-
ever, a number of authors have developed approximations that pro-
vide a reasonablerepresentationof the spacecraftmotion under var-
ious conditions.The solution approach used here is based on those
developed by Wilson11 and Byrnes and Hooper,12 among others,
and is called multiconics.

When using multiconics, the contributions of each primary to
the motion of the spacecraft are evaluated separately as solutions
to a two-body problem and then “overlapped” through the addition
of a constant velocity segment. The result is an approximation to
motion in the restricted three-body problem or the restricted four-
body problemif solar perturbationsare included.Becausea solution
generated with multiconics includes the gravitationaleffects of ad-
ditional primaries, it should provide a more accuratemethod of rep-
resentingthe motion in the MLS problemor the Earth-to-L i transfer
problem.

State Transition Matrices Using Multiconics
Although,in general,no analyticsolutionis availablefor the STM

in the R3BP or R4BP, the use of two-body conics in the multiconic
approximations allows analytic representations for the elements of
the STM to be developed from the appropriate two-body STMs.7,8

The STM for a singlemulticonicstep may be determinedby sequen-
tially multiplying the STMs correspondingto each propagationstep
in the algorithm.

As an example, consider a spacecraft moving from the Earth
to the moon. The � rst step yields an STM from propagation of
the Earth-centered conic, using the appropriate two-body solution.
This matrix relates the initial geocentric state to the � nal state of
the Earth-centered conic (EC) and is denoted U EC

f ,i . Next, the � nal
geocentric state is transformed to a selenocentric state, and the ef-
fects due to primary motion and solar perturbationsare added. The
transformation and effects of the primary motion do not affect the
STM; however, the addition of solar perturbations does contribute
by changingthe end state on the EC conic in some speci� ed manner.
The effective STM for this segment is denoted U sun

f , f . In the � eld-
free segment (motion under no gravitational force � elds), the state
is propagated backward along the selenocentric velocity vector to
the initial time. The STM correspondingto the � eld-free trajectory,
U FF

i, f , is simply a linear functionof the propagation time. In the � nal
step of the algorithm, a moon-centered conic (MC) is propagated
forward in time to obtain the approximation to the � nal selenocen-
tric state. This conic STM is denoted U MC

f,i and relates the initial
state on the MC to the � nal selenocentric state. Because all of the
STMs are de� ned relative to the inertial frame, the determination
of the complete STM that maps changes in the initial state of the
multiconic step to changes in the � nal state involves multiplying
these four matrices sequentially to obtain

U
step
f ,i D U MC

f,i U FF
i, f U

sun
f, f U

EC
f ,i (2)

A similar STM can be computed for each of the multiconic steps
along a given path. These matrices then can be sequentially multi-
plied to createthe STM for the entire trajectorysegment.This matrix
associated with the multiconic approximationof the trajectory seg-
ment is employed in various differential corrections procedures to
target desired end states for the MLS/LPO problem.

Pseudostate Theory
Application of the multiconic technique, as described earlier, is

very successful at approximatingspeci� c state vectors in the R3BP
orR4BP. However, thealgorithmbecomes less effectiveif the trajec-
tory includesa close passageof the second primary (in this case, the
moon). Because modeling of the lunar � ybys is one of the primary
reasons for using multiconics in the analysis, a modi� ed version
of the multiconicalgorithmmust be employed. This modi� ed algo-
rithm,basedon theoriginaldevelopmentbyWilson11 in conjunction
with the algorithmof Byrnes and Hooper,12 is based on pseudostate
theory. The basic approximations are the same as those associated
with the preceding multiconic algorithm, but it effectively models
hyperbolic trajectories relative to the moon.

A state transitionmatrix can also be computed for the pseudostate
approximationby sequentiallymultiplying the STM for each of the
propagation steps. This pseudostate STM is crucial in the determi-
nation of the lunar swingby through the solution of a three-body
Lambert problem (3BLP). Among various attempts at approximat-
ing the solution of the 3BLP, a particularly appropriate solution
approach was proposed by Byrnes13 using pseudostate theory and
the resulting STM in a differential corrections process. This pro-
cedure, modi� ed to include solar gravity, forms the basis of the
targetingscheme to identify a solution that passes through speci� ed
position states before and after the lunar � yby or, in other words, to
bridge the “gaps” in the solution left by the poor modeling of the
lunar encounter using PCA. These speci� ed states (termed swingby
states) around the lunar � ybys are determined from the initial ap-
proximation and represent the boundary between the two types of
multiconic algorithms. The swingby states are determined by ter-
minating the trajectory arcs surrounding the lunar encounters at a
predetermined lunar sphere of in� uence. A value of 25 Earth radii
has been found to yield a reasonablebalance between accuracy and
multiconic ef� ciency.

Algorithm
To apply the multiconic approximations to the given problem,

it is necessary that a discrete set of states (termed patch points) be
availableto start the algorithm.From the initial approximation,state
vectors representing the initial and � nal states, the swingby states
correspondingto each lunarencounter,and other desiredstates,such
as apogee locations, are available for each of the segments.

Between the endpoints of all nonswingby segments, basic multi-
conic theory is applied to generate an updated solution for that seg-
ment. To begin, the total � ight time for the segmentunder considera-
tion is subdividedto obtain a multiconic step size D t of roughly6 h.
It has been determined that a multiconic step of this size yields suf� -
cient accuracy in the sun–Earth–moon problem without sacri� cing
computational speed. The � rst multiconic step is propagated from
the initial time ti to the time t j D ti C D t , and the state transition
matrix U

step
j,i for this step is computed using two-body approxima-

tions. The end state at the � nal time t j then becomes the initial state
for the next step, and the process is repeated until the � nal time for
the entire trajectory segment is reached.

The position state at the end of the � nal multiconic step is com-
pared with the desired � nal state for the segment. If the difference
between the position states is greater than a speci� ed tolerance,
the complete STM for the segment is used to differentially correct
the velocity state at the initial point on the segment to eliminate the
error. Note that, in this differential corrections process, the initial
position state and time remain unchanged. This entire process is
repeated until the � nal position state is within the prescribed toler-
ance.This algorithm,hereafterdenotedmulticonicanalysis(MCA),
is repeated for each of the nonswingbysegments along the MLS tra-
jectory.

After MCA is applied to the nonswingby segments and the states
at the patch points are updated, it is necessary to model the lunar
� ybys to create a trajectory that is continuous in position and time.
Pseudostate analysis (PSA) is used between the swingby states of
the encounter segments to model the lunar � ybys.

For use as input to PSA, the updated states of the patch points
are available from the MCA segment solutions. Between the initial
and � nal swingby states of a given encounter segment, a two-body
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Lambert problem(relative to themoon) is solvedto yield an estimate
of the lunar periapsisstate and the time of closestapproach.After the
initialestimateof theperilunestate is computed,the lunarswingby is
approximatedby applicationof the Byrnes pseudostateprocedure13

to produce a trajectory arc between the initial and � nal swingby
states.This procedureyieldsa more accurateestimateof theperilune
state,as wellas a secondestimateof thevelocitystatesat the swingby
points.

At this stage, the trajectoryhaspositionand time continuity.How-
ever, effective velocity discontinuitiesmay now be present at each
patch point (excluding the initial and � nal states). The current es-
timate of the outgoing velocity state VC

n at any patch point n is
comparedwith the incoming velocity state V¡

n to compute the patch
point velocity discontinuities,that is,

D Vn D VC
n ¡ V¡

n (3)

ThesepatchpointD V are computedin EI coordinates.The reduction
of these velocity discontinuities is the next step.

Reduction of Velocity Discontinuities
The ultimate goal in the second step of the solution process is a

multiple-lunar-swingby trajectory that meets the design speci� ca-
tions and is continuousin both positionand time, as well as velocity.
In addition, any constraints placed on the trajectory, such as launch
conditions or trajectory end-state requirements, must be satis� ed.
Thus, it is desired to create an automated process to simultane-
ously reduce the patch point velocity discontinuitiesthroughout the
solution while incorporating any constraints. This process is ac-
complished by varying the patch point state positions and times
in a speci� ed manner using a differential corrections scheme. The
resulting various patch point D V can be reduced signi� cantly, if
not eliminated altogether, while the desired characteristics of the
solution are retained so that the numerically integrated trajectory
accurately re� ects the design speci� cations.

The cost associatedwith the multiconic estimate is de� ned as the
sum of the magnitudes of all of the velocity discontinuities along
the trajectory (D Vtot) plus any constraint penalties. This cost must
be minimized while retaining the trajectorycharacteristicsdesigned
in the initial approximation. De� ne, then, a velocity discontinuity
vector D Vi in EI coordinates at each of the patch points consistent
with Eq. (3). The subscript i denotes the patchpoint numberordered
sequentially along the trajectory beginning with the initial state.
(Note that no effectivevelocitydiscontinuitiesexist at the initial and
� nal states along the trajectory.) The patch point states themselves
are also expressed using the i subscript convention.

Derivation of the State Relationship Matrix
To employ a differential corrections process to reduce the total

cost, it is necessary to derive the relationshipsbetween a given patch
pointD Vi or constraint a k and the independentvariablesin the prob-
lem. Because the multiple-lunar-swingbytrajectory is described in
terms of discrete patch point positionsand times, it is appropriate to
choose these quantities as the independent parameters. Therefore,
it is necessary to determine the variationof each D Vi and each con-
straint a k due to variations in the patch point positions and times,
which have thus far been � xed at values determined during the ini-
tial approximation. A linear relationship between these states can
be represented in matrix form as

d D Vi

d a k
D M

d R j

d t j
(4)

where

M D

2

664

¶ D Vi

¶ R j

¶ D Vi

¶ t j

¶ a k

¶ R j

¶ a k

¶ t j

3

775 (5)

and R j and t j denote the position and time corresponding to the
j th patch point state. Notice that the matrix M (called the state

relationshipmatrix or SRM) is not square; that is, there are more in-
dependent variables (R j and t j ) than there are dependent variables
(D Vi and a k ). Because this system is underdetermined, there are
in� nitely many solutions,and it is thereforepossible to estimate the
changes in the values of the independent variables that are neces-
sary to reduceD Vi , a k , and, thus, the total cost.Note that if, through
the addition of constraints, the system becomes overdetermined, it
is still possible to add � exibility and maintain the underdetermined
natureby includingadditionalpatchpoints in the analysis.Although
the size of the SRM can be large, this disadvantage is offset by the
fact that the STMs from MCA/PSA can be used to produce expres-
sions for each partial derivative in the matrix.1,2

Variations of D Vi with Positions
To determine analytic expressions for the elements in the SRM,

begin by examining the general relationship between any velocity
discontinuityD Vn and changes in the independent position states.
Split D Vn into its component parts, as in Eq. (3), and consider each
partial derivative with respect to a position state vector R j . The
correspondingelements in the SRM become

¶ D Vn

¶ R j
D

¶ VC
n

¶ R j
¡

¶ V¡
n

¶ R j

(6)

Because the trajectory segments between consecutive patch
points with a given time of � ight are solutions of a four-body
Lambert problem (4BLP), the Lambert partials discussed in Ref. 14
can be used to evaluate the partials in Eq. (6). The elements of the
state transition matrices that appear in these Lambert partials are
already available from MCA/PSA. From the three patch point posi-
tion states that surround the velocity discontinuity (Rn ¡ 1, Rn , and
Rn C 1 ), two trajectory arcs from n ¡ 1 to n and from n to n C 1 can
be identi� ed. The correspondingSTMs, U n,n ¡ 1 and U n C 1,n , can be
written in terms of four 3 £ 3 submatrices, for example,

U n ,n ¡ 1 D

2

6664

¶ Rn

¶ Rn ¡ 1

¶ Rn

¶ VC
n ¡ 1

¶ V¡
n

¶ Rn ¡ 1

¶ V¡
n

¶ VC
n ¡ 1

3

7775
D

An ,n ¡ 1 Bn,n ¡ 1

Cn ,n ¡ 1 Dn,n ¡ 1

(7)

From Ref. 2, the nonzero variations of D Vn with the positions R j

are

¶ D Vn

¶ Rn ¡ 1
D ¡B¡1

n ¡ 1,n (8)

¶ D Vn

¶ Rn
D ¡B¡1

n C 1,n An C 1,n C B¡1
n ¡ 1,n An ¡ 1,n (9)

¶ D Vn

¶ Rn C 1
D B¡1

n C 1,n (10)

The partials of D Vn with respect to all other patch point positions
can be shown to be zero because the velocities at any given patch
point are related only to the 4BLP solutions directly preceding and
followingit. The expressionsin Eqs. (8–10)can be readilyevaluated
from the STMs determined during MCA/PSA. The results are used
to form the partials that appear in the M matrix in Eq. (4), that is, the
partials relating D Vi to changes in the patch point position states.

Variations of D Vi with Times
It is also necessary to determine the partial derivatives of D Vi

with respect to the times associatedwith each patch point state. The
process is similar to the one used to determine the partials with
respect to the patch point positions.Now, however, it is necessary to
include the effect of a differential change in time in the expression
for the state differentials.

First, note that the change in state due to a differential change in
time, d t , can be estimated by a � rst-order approximation as

d R(t C d t ) D d R(t ) C V d t (11)

d V(t C d t ) D d V(t ) C a(t ) d t (12)
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where a is the inertial acceleration of the spacecraft at the given
instant t .

Return again to the matrix M and write the expression relating
the change in D Vn to the change in time t j as follows:

¶ D Vn

¶ t j
D

¶ VC
n

¶ t j
¡

¶ V¡
n

¶ t j

(13)

Consistentwith the procedurefor the positiondifferentials,the non-
zero variationsof D Vn with respect to the times t j are evaluated as2

¶ D Vn

¶ tn ¡ 1
D B¡1

n ¡ 1,nVC
n ¡ 1 (14)

¶ D Vn

¶ tn
D B¡1

n C 1,n An C 1,nVC
n ¡ B¡1

n ¡ 1,n An ¡ 1,nV¡
n (15)

¶ D Vn

¶ tn C 1
D ¡B¡1

n C 1,nV¡
n C 1 (16)

The partials of D Vn with respect to the other patch point times are
zero.The expressionsin Eqs. (14–16) are evaluatedusing the STMs
computed in MCA/PSA and from the velocity states at the patch
points. These elements are appropriatelyplaced in the M matrix in
Eq. (4) to complete the upper half of the SRM.

Constraint Variations
To incorporateany constraints into the solutionprocess, it is nec-

essary to determine the variations of those constraints with respect
to variations in the independentparameters.The constraints that are
examined in this study can be placed into one of two categories:
launch constraintsor end-state targeting constraints.

For launch, four conditions are of greatest concern, namely,
launch altitude, launch date, launch inclination, and insertion as
close to perigee as possible. Examine each, beginning with launch
altitude. Because altitude is related to the independent parameters
through the magnitude of the initial position R1 , the constraint can
be written as

a 1 D jR1j ¡ Rdes (17)

where Rdes is the desired launch altitude. Thus, the variation is ex-
pressed as

¶ a 1

¶ R1
D

RT
1

jR1j
(18)

Similarly,becauselaunchdate is actually the independentparameter
t1, the functional form of the constraint is

a 2 D t1 ¡ tdes (19)

where tdes is the desired launch date. The variation is then

¶ a 2

¶ t1
D 1 (20)

From the de� nition of the inclination i in terms of the pole vector
of the Earth OZeq ,

cos i D R1 £ V1

jR1 £ V1j
¢ OZeq (21)

where ¢ denotes the dot product. The functional form for the incli-
nation constraint is expressed as

a 3 D cos i ¡ cos ides (22)

where ides is the desired inclinationrelative to the Earth equator and
equinox of the launch date. Consequently, the total variation can be
written as

d a 3 D
¶ a 3

¶ R1
d R1 C

¶ a 3

¶ V1
d V1 (23)

Now using Eq. (18) and the trigonometric identities

(R1 £ V1) ¢ OZeq D ( OZ eq £ R1) ¢ V1 D (V1 £ OZeq) ¢ R1 (24)

and

jR1 £ V1j D jR1j2jV1j2 ¡ (R ¢ V1)
2

1
2 (25)

it follows that

¶ cos i

¶ R1
D

(V1 £ OZ eq)T

jR1 £ V1j
¡ cos i ¢

jV1j2RT
1 ¡ (R1 ¢ V1)VT

1

jR1 £ V1j2
(26)

and

¶ cos i

¶ V1
D

( OZeq £ R1)T

jR1 £ V1j
¡ cos i ¢

jR1j2VT
1 ¡ (R1 ¢ V1)RT

1

jR1 £ V1j2
(27)

Return to Eq. (23) and note that d R1 is one of the independent
variables in the problem but d V1 dependson the positionsand times
according to the relationship

d V1 D
¶ V1

¶ R1
d R1 C

¶ V1

¶ t1
d t1 C

¶ V1

¶ R2
d R2 C

¶ V1

¶ t2
d t2 (28)

Each of the partials in Eq. (28) is a Lambert partial, as described
in the preceding sections,14 so that from Eq. (23) the variations are
expressed as

¶ a 3

¶ R1
D

¶ cos i

¶ R1
¡

¶ cos i

¶ V1
¢ B¡1

2,1 A2,1 (29)

¶ a 3

¶ t1
D

¶ cos i

¶ V1
¢ a1 C B¡1

2,1 A2,1V1 (30)

¶ a 3

¶ R2
D

¶ cos i

¶ V1
¢ B¡1

2,1 (31)

¶ a 3

¶ t2

D ¡
¶ cos i

¶ V1

¢ B¡1
2,1V2 (32)

Finally, the function for the apse launch constraint, R1 ¢ V1 D 0,
is de� ned to be

a 4 D R1 ¢ V1 (33)

The partials due to position and velocity are simply

¶ (R1 ¢ V1)
¶ R1

D VT
1 (34)

¶ (R1 ¢ V1)
¶ V1

D RT
1 (35)

Thus, the variationsof a 4 with respect to the independentvariables
can be written as

¶ a 4

¶ R1
D VT

1 ¡ RT
1 ¢ B¡1

2,1 A2,1 (36)

¶ a 4

¶ t1
D RT

1 ¢ a1 C B¡1
2,1 A2,1V1 (37)

¶ a 4

¶ R2
D RT

1 ¢ B¡1
2,1 (38)

¶ a 4

¶ t2
D ¡RT

1 ¢ B¡1
2,1V2 (39)

A second type of constraint is the end-state (RN , tN , VN ) con-
straint.This constraintis used to targeta desired� nal state (Rdes , tdes ,
Vdes) for the complete trajectory. The constraint functions are for-
mally stated as

a (5 ¡ 7) D RN ¡ Rdes (40)

a 8 D tN ¡ tdes (41)

a (9 ¡ 11) D VN ¡ Vdes (42)
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and the related variations with respect to the independent variables
are

¶ a (5 ¡ 7)

¶ RN
D I (43)

¶ a 8

¶ tN
D 1 (44)

¶ a (9 ¡ 11)

¶ RN

D ¡B¡1
N ¡ 1, N AN ¡ 1, N (45)

¶ a (9 ¡ 11)

¶ tN

D aN C B¡1
N ¡ 1, N AN¡1, N VN (46)

¶ a (9 ¡ 11)

¶ RN ¡ 1
D B¡1

N ¡ 1, N (47)

¶ a (9 ¡ 11)

¶ tN ¡ 1
D ¡B¡1

N ¡ 1, N VN ¡ 1 (48)

where I is the 3£3 identitymatrix. By appropriatechoice of the in-
dependentparameters,anyconstraintfunctionsactive in the solution
can be driven to zero, thus enforcing the constraints.

Reduction Algorithm
The D Vi reduction and constraint enforcement procedure be-

gins with the discrete set of patch point states and times. For each
nonswingby segment, MCA is applied between the initial and � nal
patchpoint states. The updatedpatch point states are then employed
by PSA to generate a second estimate of the velocity states at the
swingby points surrounding the � ybys. The patch point D Vi and
constraint penalties are computed, and the total cost is checked
against a desired tolerance. The SRM in Eq. (4) is used in a dif-
ferential correctionsprocess to compute changes in the independent
variables (positionsand times) in an attempt to reduce all of the ve-
locity discontinuitiesin the trajectory and to satisfy any constraints
simultaneously.

As noted, the system is underdetermined,and the SRM in Eq. (4)
is not invertible.Out of all possible changes in positions and times,
choose the one with the smallest Euclidean norm, that is,

d R j

d t j
D MT (MM T )¡1 d D Vi

d a k
(49)

where thedifferentialchangesinD Vi and a k are chosento reducethe
total cost. The differentialchangesfor positionsand times computed
in Eq. (49) are added to the patch point states, which are then used
to recompute an estimate of the trajectory with a cost that is lower
than that of the preceding solution. This process is repeated until
the cost is minimized to within some tolerance.Note that, although
Eq. (49) is a linear estimate of the changes, multiple iterations are
required due to the nonlinear nature of the motion.

The � nal trajectory approximated from MCA/PSA is continuous
in velocity and satis� es all constraints. These results are then input
to a numerical propagation routine to achieve the � nal desired tra-
jectory. In practice, it was determined that the jump from PCA to
MCA/PSA, including the solar perturbations, was often too great
for the differentialcorrectionsprocess. In this case, MCA is applied
to the PCA results using only the lunar gravity. After an acceptable
convergencehas been achieved, the solar perturbationsare added12

and the four-body approximation is obtained.

Results
The improved trajectory from MCA/PSA is viewed in the SR

frame as a projection onto the Oxs–Oys plane (Figs. 4 and 5). The tra-
jectories include all of the propagationsteps that comprise the MCA
and PSA procedures. The “spikes” represent the various propaga-
tion steps and are not representative of the “true” path. Although
the MCA/PSA solutionactually consists of a set of discrete solution
states, plotting all of the various steps in the MCA/PSA algorithms
shows the general characteristicsof the trajectory quite well.

The results for the butter�y trajectory include the following
launch constraints: altitudeD 200 km, inclinationD 28.5 deg, and

Fig. 4 Butter� y example: constrained.

Fig. 5 Earth-to-L2 transfer example: constrained.

trajectory insertion at perigee. The Earth-to-L2 transfer mission has
similar launch constraints and, in addition, constraints are placed
on the end-state position and date, specifying the values to be those
obtained from the initial analysis. As mentioned, the end state is
numericallygenerated in the R4BP using manifold theory5 to deter-
mine transfer characteristicsfor injectiononto a path that asymptot-
ically approachesa Lissajous orbit about the sun–Earth L2 libration
point. In the MCA/PSA solution obtained here, the velocity at the
end state was not constrained,and so a relatively small velocitydis-
continuityexists in patching these results to the Lissajous.However,
experience suggests that the Lissajous insertionD V can be reduced
by moving the end state along the manifold. These results demon-
strate this technique’s utility in designing MLS and LPO transfer
trajectories with constraints.

Final Results
As a � nal step, it is necessary to demonstrate that the resulting

multiconicapproximationhas producedposition and velocity states
that can be successfully integrated to generate a viable estimate
of the complete trajectory. The model for numerical integration in-
cludes the relativefour-bodyequationsofmotion for the sun–Earth–
moon system using the Jet PropulsionLaboratory202 ephemerides.
The numericalaccuracyof the results is on the orderof 10¡12 nondi-
mensionalunits. It is demonstratedin Ref. 2 that,once the converged
solution has been obtained from MCA/PSA, the numerical integra-
tion proceeds without any degradation of the solution.

The results appear graphically in Figs. 6 and 7 as projections in
the Oxs–Oys plane. Comparisonscan easily be made to the correspond-
ing trajectory approximations from PCA (Figs. 2 and 3) and from
MCA/PSA after the SRM reduction process (Figs. 4 and 5). No
signi� cant numerical differencesbetween the integrated results and
the previous MCA/PSA solutions appear in either case.
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Fig. 6 Butter� y example: integrated.

Fig. 7 Earth-to-L2 transfer: integrated.

Conclusions
In summary, using patched conic analysis and the solution of the

timing condition, it is possible to generate multiple-lunar-swingby
or libration-point orbit transfer trajectories that meet the given de-
sign requirements. However, patched conic analysis introduces er-
rors into the solution due to its failure to adequately model and in-
corporate the solar and lunar gravity. Using multiconic/pseudostate
analysis, it is possible to improve upon the initial solution while
maintaining the desired design characteristics. The state relation-
ship matrix, relating the velocity discontinuities and constraints in
the solution to the patch point positionsand times, is then employed
to simultaneously reduce all of the velocity discontinuities present
in the trajectory and to satisfy any constraints. The resulting nu-
merical solutions retain the general characteristics designed using
the initial estimate and are fully continuous in position, time, and
velocity.

It is concluded that use of the three-step design process results
in an accurate, ef� cient method of constructing multiple-lunar-
swingby trajectoriesthat meet the designspeci� cationsfor the prob-
lem. Furthermore, it is hoped that this procedurewill proveuseful in
the determinationof other typesof solutionsin the sun–Earth–moon
system, as well as other planetary systems.
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