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Trajectory Design in the Sun—-Earth-Moon System
Using Lunar Gravity Assists

Roby S. Wilson* and Kathleen C. Howell®
Purdue University, West Lafayette, Indiana 47907-1282

The objective of this work is the development of efficient techniques for the preliminary design of trajectories that
encounter the moon and must satisfy specific trajectory requirements, such as apogee placement, launch constraints,
or end-state targeting. These types of trajectories are highly applicable to mission design in the restricted three-
and four-body problems. The general solution approach proceeds in three steps. In the initial analysis, conic arcs
and/or other types of trajectory segments are connected at patch points to construct a first approximation. Next,
multiconic methods are used to incorporate any additional force model effects that may have been neglected in the
initial analysis. An optimization procedure is then employed to reduce the effective velocity discontinuities while
satisfying any constraints. Finally, a numerical differential corrections process results in a fully continuous multiple-
lunar-swingby trajectory that satisfies the constraints and includes appropriate lunar and solar gravitational

models.
Nomenclature
A, B, C, D = submatrices of the state transition matrix
a = semimajor axis
C; = conic endpoint
e = eccentricity
G- M* = dimensional gravitational parameter,
403,503 km®/s?
i = inclination
JD = Julian date
L; = libration point
L* = dimensional length, 384,388 km
M = state relationship matrix
Napos = number of apogees
Ninos = number of months
P, A = perigee, apogee
Rg = Earth radius, 6378.14 km
R, = perigee radius

R,V.,a = position, velocity, and acceleration vectors

T* = dimensional time, 375,173 s

r = time

X, Y Z = inertial unit vectors

X, 5.z = rotating unit vectors

ay = constraintk

AV = velocity discontinuity vector

0 = true anomaly

&, n = conic parameterizations

1.2 = set of switching parameters

] = state transition matrix

XV = phasing angles

Q = ascending node
Introduction

HE goal of this study is the development of a design tool to

create multiple-lunar-swingby trajectories in an efficient and
accurate manner and one that is applicable for a variety of mission
scenarios. The examplesin this paperdemonstratetwo such possible
trajectory concepts. The first example focuses on using multiple
lunar gravity assists to achieve a fixed line of apsides with respect
to the sun—Earth line. The second type uses a single gravity assist to
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insert into an orbit in the vicinity of one of the sun—Earth libration
points.

In this analysis, the problem solutionis separated into a sequence
of increasingly complex steps.» Initially, the trajectory is approxi-
mated as a series of geocentric arcs that encounter the moon at the
beginningand/or end of each leg. This analysisis useful in establish-
ing general trajectory characteristics such as orientation relative to
the sun, apogeedistances,and approximatelunar encountertimes.**
Note that, although these arcs are frequently assumed to be conics, it
is also possible to employ other types of approximate trajectory arcs
to obtain this initial solution. For example, solutions of a restricted
three-body (or four-body) problem can be used to obtain an initial
approximation for transfers from Earth to the sun-Earth libration
points.’ In the next step of the process, the initial approximation is
improved by using multiconic techniques to incorporate the effects
of additional gravity fields, with the goal of preserving the general
characteristics of the initial approximate trajectory. (These multi-
conic techniques are not limited to gravitational perturbations but
canalsobeused to include other types of perturbations,such as solar
radiation pressure.) In addition, a differential corrections process is
employed to ensure position and velocity continuity along the path
while satisfying all constraints imposed upon the trajectory. The
implementation of this intermediate step is the primary focus of this
work. In the final step, the results are numerically integrated using
a sun-Earth-moon (SEM) model in which solar and lunar positions
are determined from ephemeris data.

This work differs from previous work in the area of multiple-
lunar-swingby (MLS) trajectories, such as that of Ishii and Matsuo,®
by including an intermediate step between the initial approximation
and the numerically integrated solution. The application has also
been broadened by incorporating initial approximations that may
be non-Keplerian. Thus, by incorporating multiconic techniques in
the second step, the initial approximation can be improved while
the desired orbital characteristics are maintained. Therefore, much
of the design work can be accomplished using simpler models, with
the knowledge that a viable numerically integrated solution can be
obtained.

Background

In the multiple-encounterproblem, the primary focus is the iden-
tification of a specific solution for the motion of a spacecraftin a
restricted three- or four-body problem (R3BP or R4BP). In partic-
ular, the methodology is applied in the SEM system. Although it is
possible to generalize this approach to other primary systems, the
SEM system has been the focus of some recent mission planning,
and thus it is the system of choice for this study. To nondimensional-
ize the problem, then, define the characteristicquantities G - M*, L*,
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and T* corresponding to the gravitational parameter of the Earth—
moon system, the average distance between the Earth and moon, and
a characteristic time selected such that 7* = [L*3/ (G - M*)]"2.

The analysis is accomplished using three coordinate systems:
Earth inertial (EI), moon inertial (MI), and solar rotating (SR). The
first two frames (EI and MI) are the principal working frames used
in the problem analysis and are defined as follows. The EI frame
(X., Y,,Z,) has its origin at the center of the Earth and is defined
consistentwith the mean eclipticand equinoxof 2000. The MI frame
(X,n, Y, Z,,) has its origin at the center of the moon, and each axis
remains parallelto the correspondingaxisin the EI frame. The origin
of the SR frame (X;, y,, Z,) is located at the center of the Earth, with
the X, axis parallel to the vector from the sun to the Earth. The Z,
axis is coincident with the instantaneousangular momentum vector
of the Earth about the sun, and thus J, equals Z, x X;.

The methodology is heavily based on the use of the state transi-
tion matrix (STM). To simplify notation, denote @,; = @(t,, t;)
as the STM from time #; to f;. The STM can be computed an-
alytically or numerically and is the foundation of the differential
corrections proceduresused for targeting purposes. A major advan-
tage associated with using the two-body model and conic arcs is
the availability of analytic expressions for the elements of the state
transition matrix.”® The functional form of these partial derivatives
depends on the actual conic reference orbit, either elliptical or hy-
perbolic. These analytic expressions offer a quick method for the
determinationof the STM that is extremely useful in the application
of the multiconic techniques and can be used in combination with
numerical STMs generated with solutions to the R3BP.

Initial Approximation: Conics

To develop a multiple-lunar-swingbytrajectory, an initial approx-
imation that satisfies the specified design requirements is sought.
As an initial baseline, assume a solution such that all trajectory arcs
can be approximated as geocentric two-body conics, thus neglect-
ing the lunar and solar gravity effects. By specifyingthat each conic
segment begin and/or end with a lunar encounter, an approximate
MLS trajectory can be created simply by “patching” these geocen-
tric conic segments together at consecutive lunar encounter points.
This analysis yields a useful initial approximation to the solution
and providesa basis of comparisonfor the final integrated trajectory.

The motivation for incorporating multiple lunar swingbys into
any trajectory may vary, but frequently the goal is to achieve cer-
tain orbital characteristics relative to the SR frame. The concept
proposed by Farquhar and Dunham,? using lunar gravity assists to
advance the line of apsides at the rate required to “fix” the orbit in
the SR frame, is one such example. The theoretical basis for de-
termining lunar encounters at appropriate time intervals lies in the
development of a timing condition relating the motion of the sun,
Earth, moon, and spacecraft. The development of this timing con-
dition and the theoretical basis for the initial conic approximation
are presented in detail in Refs. 4,9, and 10. A brief summary of the
details is presented here.

Timing Condition

To construct a multiple-lunar-encourter trajectory, a method is
required to design a series of Earth-centered conic segments that
begin and/or end with lunar encounters and are oriented in the de-
sired direction relative to the SR frame. This approach ensures that
the spacecraft and the moon will be in the same vicinity at the ap-
propriatetimes. From detailed discussionsin Refs. 4,9, and 10, it is
apparent that the determination of conic arcs that begin and end in
lunar encounterscan be reduced to the solution of a single algebraic
equation called the timing condition (TC). The functional form of
this timing condition, from Howell and Marsh,” is an implicit alge-
braic function of the form

Tc(em’ X5 00.1,2, 5, n;dc, e(‘) =0 (1)

The variable e,, represents the eccentricity of the lunar orbit about
the Earth with perigee at P,, (Fig. 1). The angle y, also shown in
Fig. 1, describes the orientation of the orbit line of apsides with
respect to the lunar line of apsides, measured clockwise from the X
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Fig. 1 Conic arc definitions.

anis. [Note that the conic reference frame (f( R f/) is defined such that
X is along the line of apsides in the direction of the moon at time
t = 0, denoted as point R.] The parameters o;, &, and 1 are used
to uniquely parameterize the Earth-centered orbit, as described in
Ref. 9.

The solution of this algebraic function yields two of the orbit
parameters,a, and e, associatedwith the conic segment. In addition,
the true anomaly 6. and the relative time 7, corresponding to the
spacecraft location at the endpoints C; are available. Note that, in
the conic reference frame, t = 0 is defined at a spacecraft crossing
of the line of apsides (at perigee P or apogee Ao or Ay ; Fig. 1)
accordingto . Therefore,due to the near symmetry of the problem,
the spacecraft, Earth, and moon will be nearly collinear along the
spacecraftline of apsides atz = 0.

Conic Arc Selection

Once the conic arc has been determined from the solution of
the timing condition, it is necessary to orient this segment in the
SR frame with respect to the sun-Earth line (X, axis in the SR
frame). It is assumed in the solution process that the conic orbit
plane for each segment is coincident with the lunar orbit plane.
(This requirement facilitates the conic selection process only and
may be relaxed later.) Thus, it is possible to completely define the
appropriate conic segment, as well as its orientation, in terms of
the lunar orbit. The segment is represented by the orbit parameters
e, €0y Qmoons Imoons 6> and f. at each endpoint (C; in Fig. 1).

After the conic orbit plane is quantified, orientation of the space-
craft orbit is accomplished through identification of epochs corre-
sponding to appropriate locations of the sun and moon relative to
the Earth. Such epochs result from an iterative search through solar
and lunar ephemerides. This process is aided by the inherent near
symmetry of consecutive collision orbits* The angle v (Fig. 1)
specifies the orientation of the spacecraft line of apsides with re-
spect to the sun—Earth line. This angle is ideally O deg for a trajec-
tory with antisolar pointing apogees and 180 deg for solar pointing
apogees.

There are two types of solutions for the conic arcs generated by
solution of the timing condition, as shown in Fig. 1. The first type
of conic arc is termed an inner loop.!® For this type, a piece of the
conic solution is chosen that contains at least one perigee and some
number of apogees during the time from one lunar encounter to the
next. The other type of conic segment is called an outer loop'® and
is characterized by conic segments that pass through at least one
apogee and some number of perigees between lunar encounters.

For construction of a complete multiple-lunar-encouner path, a
series of conic arc segments are patched together at lunar encoun-
ters. The arcs must be properly sequenced using the conic arc se-
lection process to ensure an orbit orientation history consistent with
the requirements. The entire process of creating a multiple-lunar-
encounter trajectory by patching these conic arc segments together
is called patched conic analysis (PCA).

This design process requires a set of input parameters that are
determined from the design specifications for the mission. These
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parameters are used to solve for the orbital elements describing
the conic arcs that comprise the initial estimate. The first input is
the specification of the injection date for the MLS trajectory in
Julian format (J D). To facilitate a solution, this date is assumed to
correspondto perigee on the first conic segment. The nextinputs are
the approximatelengths of the conic segmentsin an integer number
of months Ny, and the expected number of apogees N .

The fourth required input parameter is an estimate of the angle
y. Because most of the flight time is spent in the outer loops, it is
desirable for these segments to match this specification as closely
as possible. For inner loops, however, it is often desirable from a
mission design standpoint to specify the perigee passage distance
R, in addition to . This specification usually results in some loss
of control over the orientation angle y for the segment, but because
the innerloops are generally shorterin duration than the outer loops,
this loss is not crucial to overall trajectory planning.

Given these inputs (JD;, Nyos, Nypos, ¥, and possibly R,,) that
reflect the desirable characteristics for each Earth-centered conic,
the conic arc selection algorithm solves the TC iteratively, as de-
scribed in Ref. 10, for the properly oriented conic arc segments
that best match the mission specifications. From the solution of the
TC, the orbit parameters representing the conic arcs and the dates
of the lunar encounters are obtained. All conic segments are then
patched together at lunar encounter points to create the two-body
approximation to the solution of the MLS problem.

Initial Approximation: Restricted Three-Body Problem

Another approach for construction of an initial approximation
involves solutions to a restricted three-body problem. One exam-
ple is a transfer from the Earth to a sun-Earth libration-pointorbit
using one or more lunar gravity assists. In this case, the final state
for the MLS trajectory is chosen to coincide with a time and posi-
tion state along a stable manifold associated with a predetermined
libration-pointorbit (LPO).> This manifold state is then targeted by
the trajectory arc selection algorithm to create a transfer from the
Earth to the vicinity of the LPO. A deterministic injectionA V at
the final state completes the transfer to the libration-pointorbit.

Targeting of the final state on the MLS trajectoryis accomplished
using two different methods, depending on the desired solution. In
the first method, the conic arcs leadingto the final lunarencounterare
determined, and a two-body Lambert solution is generated between
the final lunar encounter and the desired final position state. This
method is used to obtain the initial approximationof the transfer that
includes one or more lunar gravity assists. In the second method,
a portion of the manifold (propagated backward from the LPO to
the Earth) is employed as the approximation of the final segment
in the trajectory. This type of initial approximation is especially
relevant for those MLS solutions with one lunar encounter or no
lunar encounters.

Results from Patched Conic Analysis

The first example of a multiple-lunar-swingbytrajectory is com-
posed of four conic segments: two inner loops and two outer loops.
For this trajectory, it is specified that the spacecraft apogees switch
from an orientationin the antisolar (+x,) directionto the solar (—x;)
direction, creating a “butterfly” trajectory. An injection date of JD
2450573.0is specified for the first segment, correspondingto a conic
orbit perigee on April 4, 1997. The input parameters associated with
the conic segments that result from the patched conic algorithm are
shown in Table 1. The conic arc elements a. and e, from the solution
of the TC, as well as the actual trajectory duration, are also shown
for each of the four segments in the trajectory.

The second example of an MLS trajectory is a transfer to the
vicinity of the sun-Earth L, libration point using a single lunar
flyby. For this case, an initial date of JD 2451547.3 is specified
for the injection segment, correspondingto a conic orbit perigee on
Nov. 4, 1999. The end state is selected to coincide with a specified
Lissajous orbitand its associated stable manifold.’ The following is
representative of a state on the manifold: x; = 1,262,748 km, y, =
—204,731km, and z;, = —43,300km relativeto the SR frame on JD
2451593.6. To generate a transfer path from the Earth to the target
point, a variety of approaches might be used to produce an initial

Table1 Input/output parameters for butterfly example

Segment
Parameter 1 2 3 4
Inputs
NHIOS 1 2 6 2
Napos 1 1 3 1
Ry, km 6,578 e 80,000 _
v, deg 0.0 0.0 90.0 180.0
Outputs
acl L* 0.56059 1.86946 1.50160 1.87954
e 0.96947 0.81973 0.86140 0.80178
A't, days 15.4276 63.7251 157.4934 64.2000
1000 T T T T T T
500 |
00 "%
Y(Re)
50,0 |-
-100.0 |-
-1500 |
L 1 L L L A4 L L L 1
2000 -1500 -1000 500 0.0 500 1000 1500 2000
X(Re)
Fig. 2 Butterfly example: PCA
U T T T T .

Lunar Orbit

-100.0 |- 1

Fig. 3 Earth-to-L; transfer example: PCA.

approximation. In this case, an initial conic arc associated with the
phasing loops is determined with a nondimensionala, = 0.56946
and an eccentricitye, = 0.96995, similarto the firstexample. Then,
giventhe positionand date of the lunarencounter, the final trajectory
segment is initially approximated as a conic that connects the lunar
encounterwith the targetposition and date from a numerical solution
of the R4BP.

The resulting trajectories are projected onto the X,—y, plane in the
SR frame and shown in Figs. 2 and 3. The four-arc butterfly solution
is shown in Fig. 2 and clearly meets the desired change in solar ori-
entation angle. The LPO transferexample is shown in Fig. 3, where
the dashed line denotes the continuation of the manifold and the
desired Lissajous orbit (as a numerically computed solution of the
R4BP). From the view of the trajectory in the SR frame, it is evi-
dent that this process of patching together two- and four-body arcs
yields a reasonable approximation to solutions of the MLS prob-
lem that meet the design requirements. However, by neglecting the
lunar and solar gravity in the conic arcs, errors are introduced into
the solution. These errors are evidenced as large equivalent velocity
discontinuities at the lunar collision points and (not surprisingly)
a significant velocity discontinuity at the patch point between the
two- and four-body arcs. The poor modeling of the lunar encounters
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in PCA generally prevents the straightforward extension of the so-
lution to produce a numerically integrated trajectory with the same
design characteristics. Therefore, it becomes necessary to improve
the initial results so that a viable trajectory can be constructed.

Multiconic Analysis

As an intermediate step between the initial approximation and
numerical integrationin the four-body problem, a three-body model
with solar perturbationsis employed to enable any initial result to
serve as the basis for an improved solution of the MLS problem.
The goal in this step is to employ the approximation techniques
in a manner that will ultimately lead to a numerically integrated
trajectory that retains the overall orbit characteristics designed in
the preliminary step.

The differential equations governing motion in the restricted
three-body problem are not, in general, solvable analytically. How-
ever, a number of authors have developed approximations that pro-
vide a reasonablerepresentationof the spacecraftmotion under var-
ious conditions. The solution approach used here is based on those
developed by Wilson!! and Byrnes and Hooper,'> among others,
and is called multiconics.

When using multiconics, the contributions of each primary to
the motion of the spacecraft are evaluated separately as solutions
to a two-body problem and then “overlapped” through the addition
of a constant velocity segment. The result is an approximation to
motion in the restricted three-body problem or the restricted four-
body problemif solar perturbationsare included. Because a solution
generated with multiconics includes the gravitational effects of ad-
ditional primaries, it should provide a more accurate method of rep-
resentingthe motionin the MLS problem or the Earth-to-L; transfer
problem.

State Transition Matrices Using Multiconics

Although,in general,no analytic solutionis availablefor the STM
in the R3BP or R4BP, the use of two-body conics in the multiconic
approximations allows analytic representations for the elements of
the STM to be developed from the appropriate two-body STMs.”-#
The STM for a single multiconic step may be determined by sequen-
tially multiplying the STMs correspondingto each propagationstep
in the algorithm.

As an example, consider a spacecraft moving from the Earth
to the moon. The first step yields an STM from propagation of
the Earth-centered conic, using the appropriate two-body solution.
This matrix relates the initial geocentric state to the final state of
the Earth-centered conic (EC) and is denoted @fff Next, the final
geocentric state is transformed to a selenocentric state, and the ef-
fects due to primary motion and solar perturbations are added. The
transformation and effects of the primary motion do not affect the
STM; however, the addition of solar perturbations does contribute
by changingthe end state on the EC conic in some specified manner.
The effective STM for this segment is denoted @%'. In the field-
free segment (motion under no gravitational force fields), the state
is propagated backward along the selenocentric velocity vector to
the initial time. The STM correspondingto the field-free trajectory,
@EFf, is simply a linear function of the propagationtime. In the final
step of the algorithm, a moon-centered conic (MC) is propagated
forward in time to obtain the approximationto the final selenocen-
tric state. This conic STM is denoted @Y{ and relates the initial
state on the MC to the final selenocentric state. Because all of the
STMs are defined relative to the inertial frame, the determination
of the complete STM that maps changes in the initial state of the
multiconic step to changes in the final state involves multiplying
these four matrices sequentially to obtain

step __ HMC HFF gsun 4HEC
i = Oy OO )

A similar STM can be computed for each of the multiconic steps
along a given path. These matrices then can be sequentially multi-
pliedto createthe STM for the entire trajectory segment. This matrix
associated with the multiconic approximation of the trajectory seg-
ment is employed in various differential corrections procedures to
target desired end states for the MLS/LPO problem.

Pseudostate Theory

Application of the multiconic technique, as described earlier, is
very successful at approximating specific state vectors in the R3BP
or R4BP. However, the algorithmbecomes less effectiveif the trajec-
tory includes a close passage of the second primary (in this case, the
moon). Because modeling of the lunar flybys is one of the primary
reasons for using multiconics in the analysis, a modified version
of the multiconic algorithm must be employed. This modified algo-
rithm, based on the original developmentby Wilson!! in conjunction
with the algorithm of Byrnes and Hooper,'? is based on pseudostate
theory. The basic approximations are the same as those associated
with the preceding multiconic algorithm, but it effectively models
hyperbolic trajectories relative to the moon.

A state transitionmatrix can also be computed for the pseudostate
approximationby sequentially multiplying the STM for each of the
propagation steps. This pseudostate STM is crucial in the determi-
nation of the lunar swingby through the solution of a three-body
Lambert problem (3BLP). Among various attempts at approximat-
ing the solution of the 3BLP, a particularly appropriate solution
approach was proposed by Byrnes'® using pseudostate theory and
the resulting STM in a differential corrections process. This pro-
cedure, modified to include solar gravity, forms the basis of the
targeting scheme to identify a solution that passes through specified
position states before and after the lunar flyby or, in other words, to
bridge the “gaps” in the solution left by the poor modeling of the
lunar encounter using PCA. These specified states (termed swingby
states) around the lunar flybys are determined from the initial ap-
proximation and represent the boundary between the two types of
multiconic algorithms. The swingby states are determined by ter-
minating the trajectory arcs surrounding the lunar encounters at a
predetermined lunar sphere of influence. A value of 25 Earth radii
has been found to yield a reasonable balance between accuracy and
multiconic efficiency.

Algorithm

To apply the multiconic approximations to the given problem,
it is necessary that a discrete set of states (termed patch points) be
availableto start the algorithm. From the initial approximation,state
vectors representing the initial and final states, the swingby states
correspondingto each lunarencounter,and other desired states, such
as apogee locations, are available for each of the segments.

Between the endpoints of all nonswingby segments, basic multi-
conic theory is applied to generate an updated solution for that seg-
ment. To begin, the total flight time for the segmentunder considera-
tion is subdividedto obtain a multiconic step sizeA ¢ of roughly 6 h.
Ithas been determined that a multiconic step of this size yields suffi-
cient accuracy in the sun-Earth-moon problem without sacrificing
computational speed. The first multiconic step is propagated from
the initial time #; to the time ¢; = #; + A t, and the state transition
matrix @j‘j” for this step is computed using two-body approxima-
tions. The end state at the final time #; then becomes the initial state
for the next step, and the process is repeated until the final time for
the entire trajectory segment is reached.

The position state at the end of the final multiconic step is com-
pared with the desired final state for the segment. If the difference
between the position states is greater than a specified tolerance,
the complete STM for the segment is used to differentially correct
the velocity state at the initial point on the segment to eliminate the
error. Note that, in this differential corrections process, the initial
position state and time remain unchanged. This entire process is
repeated until the final position state is within the prescribed toler-
ance. This algorithm, hereafter denoted multiconic analysis (MCA),
is repeated for each of the nonswingby segments along the MLS tra-
jectory.

After MCA is applied to the nonswingby segments and the states
at the patch points are updated, it is necessary to model the lunar
flybys to create a trajectory that is continuous in position and time.
Pseudostate analysis (PSA) is used between the swingby states of
the encounter segments to model the lunar flybys.

For use as input to PSA, the updated states of the patch points
are available from the MCA segment solutions. Between the initial
and final swingby states of a given encounter segment, a two-body
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Lambert problem (relative to the moon) is solved to yield an estimate
of the lunar periapsis state and the time of closestapproach. After the
initial estimate of the perilunestate is computed, the lunar swingby is
approximated by application of the Byrnes pseudostate procedure'?
to produce a trajectory arc between the initial and final swingby
states. This procedureyields a more accurateestimate of the perilune
state,as well as asecondestimate of the velocity states at the swingby
points.

Atthis stage, the trajectory has position and time continuity. How-
ever, effective velocity discontinuities may now be present at each
patch point (excluding the initial and final states). The current es-
timate of the outgoing velocity state V' at any patch point 7 is
compared with the incoming velocity state V, to compute the patch
point velocity discontinuities, that is,

AV, =Vi—V 3)

These patchpointA V are computedin EI coordinates. The reduction
of these velocity discontinuitiesis the next step.

Reduction of Velocity Discontinuities

The ultimate goal in the second step of the solution process is a
multiple-lunar-swingby trajectory that meets the design specifica-
tions and is continuousin both positionand time, as well as velocity.
In addition, any constraints placed on the trajectory, such as launch
conditions or trajectory end-state requirements, must be satisfied.
Thus, it is desired to create an automated process to simultane-
ously reduce the patch point velocity discontinuities throughout the
solution while incorporating any constraints. This process is ac-
complished by varying the patch point state positions and times
in a specified manner using a differential corrections scheme. The
resulting various patch point A V can be reduced significantly, if
not eliminated altogether, while the desired characteristics of the
solution are retained so that the numerically integrated trajectory
accurately reflects the design specifications.

The cost associated with the multiconic estimate is defined as the
sum of the magnitudes of all of the velocity discontinuities along
the trajectory (A Vi) plus any constraint penalties. This cost must
be minimized while retaining the trajectory characteristicsdesigned
in the initial approximation. Define, then, a velocity discontinuity
vectorA V; in EI coordinates at each of the patch points consistent
with Eq. (3). The subscripti denotes the patch point number ordered
sequentially along the trajectory beginning with the initial state.
(Note that no effective velocity discontinuitiesexist at the initial and
final states along the trajectory.) The patch point states themselves
are also expressed using the i subscriptconvention.

Derivation of the State Relationship Matrix

To employ a differential corrections process to reduce the total
cost, itis necessary to derive the relationshipsbetween a given patch
pointA V; or constraintey and the independentvariablesin the prob-
lem. Because the multiple-lunar-swingby trajectory is described in
terms of discrete patch point positions and times, it is appropriate to
choose these quantities as the independent parameters. Therefore,
itis necessary to determine the variationof eachA V; and each con-
straint o5 due to variations in the patch point positions and times,
which have thus far been fixed at values determined during the ini-
tial approximation. A linear relationship between these states can
be represented in matrix form as

AYV; _M OR; @)
Soy | 3,
where
OAV, 0AV;
OR; ot;
M= J J (5)
6ak 6ak

and R; and ¢; denote the position and time corresponding to the
Jjth patch point state. Notice that the matrix M (called the state

relationshipmatrix or SRM) is not square; that s, there are more in-
dependent variables (R; and ¢;) than there are dependent variables
(A V; and o). Because this system is underdetermined, there are
infinitely many solutions, and it is therefore possible to estimate the
changes in the values of the independent variables that are neces-
sarytoreduceA V;, oy, and, thus, the total cost. Note thatif, through
the addition of constraints, the system becomes overdetermined, it
is still possible to add flexibility and maintain the underdetermined
nature by includingadditional patch points in the analysis. Although
the size of the SRM can be large, this disadvantageis offset by the
fact that the STMs from MCA/PSA can be used to produce expres-
sions for each partial derivative in the matrix.!2

Variations of A V; with Positions

To determine analytic expressions for the elements in the SRM,
begin by examining the general relationship between any velocity
discontinuityA V, and changes in the independent position states.
SplitA V, into its component parts, as in Eq. (3), and consider each
partial derivative with respect to a position state vector R;. The
corresponding elements in the SRM become

6AV, oV oV, ©)
OR; OR; OR;

Because the trajectory segments between consecutive patch
points with a given time of flight are solutions of a four-body
Lambert problem (4BLP), the Lambert partials discussedin Ref. 14
can be used to evaluate the partials in Eq. (6). The elements of the
state transition matrices that appear in these Lambert partials are
already available from MCA/PSA. From the three patch point posi-
tion states that surround the velocity discontinuity (R, — |, R,,, and
R, . 1), two trajectory arcs from n — 1 ton and fromn to n + 1 can
be identified. The correspondingSTMs, @, , —, and D, 11 ,, can be
written in terms of four 3 x 3 submatrices, for example,

OR, OR,
> 6R,,,1 6V,,+,1 Amn—l an, 1 (7)
nn—1 = aV; oV~ B Crur —1 D’L,’T -1

I_aR,,,1 av,,tIJ

From Ref. 2, the nonzero variations of A V,, with the positions R;
are

oAV, _
E = _Bnllm (8)
oAV, _ _
W = —B”JlanA,,JrL,, + B,,llly,,AnfL,n (9)
oAV,
— =8B! (10)
aR,,+1 n+l,n

The partials of A V,, with respect to all other patch point positions
can be shown to be zero because the velocities at any given patch
point are related only to the 4BLP solutions directly preceding and
followingit. The expressionsin Eqs. (8-10) can be readily evaluated
from the STMs determined during MCA/PSA. The results are used
to form the partials that appearin the M matrix in Eq. (4), thatis, the
partials relating A V; to changes in the patch point position states.

Variations of A V; with Times

It is also necessary to determine the partial derivatives of A V;
with respect to the times associated with each patch point state. The
process is similar to the one used to determine the partials with
respectto the patch point positions. Now, however, it is necessary to
include the effect of a differential change in time in the expression
for the state differentials.

First, note that the change in state due to a differential change in
time, ot, can be estimated by a first-order approximation as

SR(t + &) = OR(t) + Vot (a1

SV(t + ot) = 6V(t) + a(t)ot (12)
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where a is the inertial acceleration of the spacecraft at the given
instantz.

Return again to the matrix M and write the expression relating
the change inA V,, to the change in time ¢; as follows:

GAV, OVF oV
—t—_n_n (13)
ot

ot; ot;

J J J

Consistentwith the procedure for the position differentials,the non-
zero variationsof A V,, with respect to the times ¢; are evaluated as?

AV,
rl = Bnillﬂnv;rfl (14)
AV,
T = B,:Jrliy,,AnJrlﬂnV;r - B,:llly,,AnflﬂnV; (15)
AV, o
Wﬂ = _Bn+lm n+1 (16)

The partials of A V,, with respect to the other patch point times are
zero. The expressionsin Egs. (14-16) are evaluated using the STMs
computed in MCA/PSA and from the velocity states at the patch
points. These elements are appropriately placed in the M matrix in
Eq. (4) to complete the upper half of the SRM.

Constraint Variations

To incorporate any constraintsinto the solution process, it is nec-
essary to determine the variations of those constraints with respect
to variationsin the independentparameters. The constraintsthat are
examined in this study can be placed into one of two categories:
launch constraints or end-state targeting constraints.

For launch, four conditions are of greatest concern, namely,
launch altitude, launch date, launch inclination, and insertion as
close to perigee as possible. Examine each, beginning with launch
altitude. Because altitude is related to the independent parameters
through the magnitude of the initial position R, the constraint can
be written as

o = |R1| - Rdes (17)

where R is the desired launch altitude. Thus, the variationis ex-
pressed as

o _ R

=— (18)
OR, IRy

Similarly, becauselaunchdate is actually the independentparameter
t,, the functional form of the constraintis

(25 :tl _tdes (19)
where 4., is the desired launch date. The variation is then

8052

— =1 20
o (20)
From the definition of the inclinationi in terms of the pole vector

of the Earth Z

eq»
R, xV, 5

— . Z. 21
R x Vi d @b

cosi =

where - denotes the dot product. The functional form for the incli-
nation constraintis expressed as

Q3 = COSI — COSiges (22)

where i is the desired inclinationrelative to the Earth equator and
equinox of the launch date. Consequently, the total variation can be
written as

0 (07} 6053

OR, + —6V, (23)

da3 = -
R, v,

Now using Eq. (18) and the trigonometric identities

Ry X V1) Zeg= (Zeg xR) - Vi = (Vy X Zg) R, (24)

and
1
IR, x Vi = [IRI"IVi> — R-V))*] (25)
it follows that
dcosi (Vi x Ze)” VPRI =R VOV 26)
oR, IR, x V| IR, x V|2
and
dcosi  (Ze xR)T R,?VT — (R, - V|)RT
COsS _( q 1) . ..|1| 1 (R, 1)1 27)

oVi IR, x V| IR, x V|2

Return to Eq. (23) and note that R, is one of the independent
variablesin the problem but 6V depends on the positions and times
according to the relationship

6V1 aVl aV] a‘/1
— —6t; + — R, + — 4t 28
R, o, ' T oR, ot (28)
Each of the partials in Eq. (28) is a Lambert partial, as described
in the preceding sections,' so that from Eq. (23) the variations are
expressed as

ooy ocosi  Ocosi

R, ok oy, Putu (29)
aa_‘:f N aac‘(;?i By 14,,7) (30)
2_12 - aac‘(;?i B 31)
e NI (32)

oty oV, :

Finally, the function for the apse launch constraint, R, - V| = 0,
is defined to be

oy =R;-V, (33)
The partials due to position and velocity are simply
OR,-V
OR,
a(Rl ) Vl) T
— =R 35
v, | (35

Thus, the variations of a, with respect to the independentvariables
can be written as

ooy

R, VI =Rl -B; A, (36)
oa
a—tl“ =R" - (a;+ B; | A, ,V}) (37)
ooy _
e R{ - B, (38)
Oay -
e —R} - B;|V; (39

A second type of constraint is the end-state (Ry, ty, V) con-
straint. This constraintis used to targeta desired final state (R e, fges»
Vies) for the complete trajectory. The constraint functions are for-
mally stated as

Ks5-7) = Ry — Ry (40)
g = Iy — lges (41)

o911y = Vy — Vies (42)
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and the related variations with respect to the independent variables
are

oays_7)
— =] 43
2R, (43)
Ja,
= -1 (44)
oty
605(9,11) _
R, - _BNI—L,N AN—L,N (45)
Ooyg_
MZ"N*—B};L]NAN*LNVN (46)
oty AN
O 11 -
=B 47
Ry N-LN (47
Oy
201D B Vi (48)
Oty _ ’

where I is the 3 x 3 identity matrix. By appropriatechoice of the in-
dependentparameters,any constraintfunctionsactive in the solution
can be driven to zero, thus enforcing the constraints.

Reduction Algorithm

The A V; reduction and constraint enforcement procedure be-
gins with the discrete set of patch point states and times. For each
nonswingby segment, MCA is applied between the initial and final
patchpointstates. The updated patch point states are then employed
by PSA to generate a second estimate of the velocity states at the
swingby points surrounding the flybys. The patch point A V; and
constraint penalties are computed, and the total cost is checked
against a desired tolerance. The SRM in Eq. (4) is used in a dif-
ferential correctionsprocess to compute changes in the independent
variables (positions and times) in an attempt to reduce all of the ve-
locity discontinuitiesin the trajectory and to satisfy any constraints
simultaneously.

As noted, the system is underdetermined,and the SRM in Eq. (4)
is not invertible. Out of all possible changes in positions and times,
choose the one with the smallest Euclidean norm, that is,

R, _mgT Ty-1 AV,
{&j}_M(MM) {&xk} (49)

where the differentialchangesinA V; and oy are chosentoreducethe
total cost. The differentialchanges for positions and times computed
in Eq. (49) are added to the patch point states, which are then used
to recompute an estimate of the trajectory with a cost that is lower
than that of the preceding solution. This process is repeated until
the cost is minimized to within some tolerance. Note that, although
Eq. (49) is a linear estimate of the changes, multiple iterations are
required due to the nonlinear nature of the motion.

The final trajectory approximated from MCA/PSA is continuous
in velocity and satisfies all constraints. These results are then input
to a numerical propagation routine to achieve the final desired tra-
jectory. In practice, it was determined that the jump from PCA to
MCA/PSA, including the solar perturbations, was often too great
for the differential corrections process. In this case, MCA is applied
to the PCA results using only the lunar gravity. After an acceptable
convergence has been achieved, the solar perturbations are added'?
and the four-body approximationis obtained.

Results

The improved trajectory from MCA/PSA is viewed in the SR
frame as a projection onto the x,—y, plane (Figs. 4 and 5). The tra-
jectoriesinclude all of the propagationsteps that comprise the MCA
and PSA procedures. The “spikes” represent the various propaga-
tion steps and are not representative of the “true” path. Although
the MCA/PSA solution actually consists of a set of discrete solution
states, plotting all of the various steps in the MCA/PSA algorithms
shows the general characteristics of the trajectory quite well.

The results for the butterfly trajectory include the following
launch constraints: altitude =200 km, inclination=28.5 deg, and

100.0

-100.0

L
-200.0 -150.0 -100.0 -50.0 0.0 50.0 100.0 150.0

100.0 |- B

-100.0 | B

-50.0 00 50.0 100.0 150.0 2000 250.0
X (Rg)

Fig. 5 Earth-to-L, transfer example: constrained.

trajectoryinsertion at perigee. The Earth-to-L, transfer mission has
similar launch constraints and, in addition, constraints are placed
on the end-state position and date, specifying the values to be those
obtained from the initial analysis. As mentioned, the end state is
numerically generatedin the R4BP using manifold theory to deter-
mine transfer characteristicsfor injection onto a path that asymptot-
ically approaches a Lissajous orbit about the sun-Earth L, libration
point. In the MCA/PSA solution obtained here, the velocity at the
end state was not constrained,and so a relatively small velocity dis-
continuity exists in patching these results to the Lissajous. However,
experience suggests that the LissajousinsertionA V can be reduced
by moving the end state along the manifold. These results demon-
strate this technique’s utility in designing MLS and LPO transfer
trajectories with constraints.

Final Results

As a final step, it is necessary to demonstrate that the resulting
multiconic approximationhas produced position and velocity states
that can be successfully integrated to generate a viable estimate
of the complete trajectory. The model for numerical integration in-
cludesthe relative four-body equations of motion for the sun-Earth—
moon system using the Jet Propulsion Laboratory 202 ephemerides.
The numerical accuracy of the results is on the order of 10~'2 nondi-
mensionalunits. It is demonstratedin Ref. 2 that, once the converged
solution has been obtained from MCA/PSA, the numerical integra-
tion proceeds without any degradation of the solution.

The results appear graphically in Figs. 6 and 7 as projections in
the x,—y, plane. Comparisons can easily be made to the correspond-
ing trajectory approximations from PCA (Figs. 2 and 3) and from
MCA/PSA after the SRM reduction process (Figs. 4 and 5). No
significant numerical differences between the integrated results and
the previous MCA/PSA solutions appear in either case.
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Fig. 6 Butterfly example: integrated.
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Fig. 7 Earth-to-L, transfer: integrated.

Conclusions

In summary, using patched conic analysis and the solution of the
timing condition, it is possible to generate multiple-lunar-swingby
or libration-point orbit transfer trajectories that meet the given de-
sign requirements. However, patched conic analysis introduces er-
rors into the solution due to its failure to adequately model and in-
corporate the solar and lunar gravity. Using multiconic/pseudostate
analysis, it is possible to improve upon the initial solution while
maintaining the desired design characteristics. The state relation-
ship matrix, relating the velocity discontinuities and constraints in
the solution to the patch point positions and times, is then employed
to simultaneously reduce all of the velocity discontinuities present
in the trajectory and to satisfy any constraints. The resulting nu-
merical solutions retain the general characteristics designed using
the initial estimate and are fully continuous in position, time, and
velocity.

It is concluded that use of the three-step design process results
in an accurate, efficient method of constructing multiple-lunar-
swingby trajectoriesthat meet the design specifications for the prob-
lem. Furthermore, it is hoped that this procedure will prove usefulin
the determination of other types of solutionsin the sun-Earth-moon
system, as well as other planetary systems.

Acknowledgments

Portions of this work were supported by Purdue University and
the Indiana Space Grant Consortium. The authors would like to
thank Brian Barden of Purdue University for numerical data used
to generate the libration point orbit transfer example.

References

'Wilson,R. S., “A Design Tool for Constructing Multiple Lunar Swingby
Trajectories,” M.S. Thesis, School of Aeronautics and Astronautics, Purdue
Univ., West Lafayette, IN, Dec. 1993.

2Wilson, R. S., and Howell, K. C., “A Design Concept for Multiple Lunar
Swingby Trajectories,” AIAA Paper 94-3718, Aug. 1994.

3Farquhar, R. W., and Dunham, D. W., “A New Trajectory Concept for
Exploring the Earth’s Geomagnetic Tail,” Journal of Guidance and Control,
Vol. 4, No. 2, 1981, pp. 192-196.

4Marsh, S. M., and Howell, K. C., “Double Lunar Swingby Trajectory
Design,” Proceedings of the AIAA/JAAS Astrodynamics Conference, AIAA,
Washington, DC, 1988, pp. 554-562.

SHowell, K. C., Barden, B. T., and Lo, M. W., “Application of Dynamical
Systems Theory to Trajectory Design for a Libration Point Mission,” Journal
of the Astronautical Sciences, Vol. 45, No. 2, 1997, pp. 161-178.

%Tshii, N., and Matsuo, H., “Design Procedure of Accurate Orbits in a
Multi-Body Frame with a Multiple Swingby,” American Astronautical So-
ciety, AAS Paper 93-655, Aug. 1993.

"Spencer, D. A., “Multiple Lunar Encounter Trajectory Design Using a
Multi-Conic Approach,” M.S. Thesis, School of Aeronautics and Astronau-
tics, Purdue Univ., West Lafayette, IN, Dec. 1991.

SGoodyear, W. H., “A General Method for the Computation of Cartesian
Coordinates and Partial Derivatives of the Two-Body Problem,” NASA CR-
522, Sept. 1966.

9Howell, K. C., and Marsh, S. M., “A General Timing Condition for Con-
secutive Collision Orbits in the Limiting Case 1 = 0 of the Elliptic Restricted
Problem,” Celestial Mechanics, Vol. 52, No. 2, 1991, pp. 167-194.

1OMarsh, S. M., “Sun-Synchronous Trajectory Design Using Consecutive
Lunar Gravity Assists,” M.S. Thesis, School of Aeronautics and Astronau-
tics, Purdue Univ., West Lafayette, IN, May 1988.

"'Wwilson, S. W., “A Pseudostate Theory for the Approximation of Three-
Body Trajectories,” AIAA Paper 70-1061, Aug. 1970.

1szrnes, D. V., and Hooper, H. L., “Multi-Conic: A Fast and Accurate
Method of Computing Space Flight Trajectories,” AIAA Paper 70-1062,
Aug. 1970.

Byrnes, D. V., “Application of the Pseudostate Theory to the Three-
Body Lambert Problem,” Journal of the Astronautical Sciences, Vol. 37,
July-Sept. 1989, pp. 221-232.

14D’ Amario, L. A., Byrnes, D. V., Sackett, L. L., and Stanford, R. H.,
“Optimization of Multiple Flyby Trajectories,” American Astronautical So-
ciety, AAS Paper 79-162, June 1979.

F. H. Lutze Jr.
Associate Editor



